

III Semester B.A./B.Sc. Examination, November/December 2015 (Semester Scheme) (N.S.) (2012-13 and Onwards) MATHEMATICS – III

Time: 3 Hours

Max. Marks: 100

Instruction: Answerall questions.

I. Answer any fifteen questions:

 $(15 \times 2 = 30)$

- 1) Prove that every subgroup of an abelian group is normal.
- 2) Is $f:(z, +) \rightarrow (2z, +)$ defined by f(x) = 2x a homomorphism.
- 3) Define Kernel of a homomorphism.

4) If
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$. Find $f^{-1} \circ g$.

- 5) Solve $x 2y \ge 1$ graphically.
- 6) Define: (1) Basic solution (2) Basic feasible solution of a L.P.P.
- 7) Determine the initial basic feasible solution to the following transportation problem using Row minima method.

Destination Origin	D ₁	D ₂	D ₃	Supply
O ₁	50	30	220	1
O ₂	90	45	170	3
O ₃	200	250	50	4
Demand	4	2	2	

8) Find the limit of the sequence $\left\{\frac{1}{2^n}\right\}$.

()

 $(\)$

()

()

()

()

. ()

()

()

- 9) Show that the sequence $\{x_n\}$ whose n^{th} term is $\frac{1}{3n+4}$ is monotonically decreasing.
- 10) Define limit of a sequence.
- () 11) State Cauchy's principle of convergence of sequence. ()
- 12) If a series $\sum U_n$ is convergent, then prove that $\lim_{n\to\infty} u_n = 0$. ()
- 13) Test the convergence of the series $\sum \frac{n^3}{1+n^4}$.
- 14) State D'Alembert's ratio test for infinite series.
- 15) Define conditional convergence and absolute convergence of an alternating
- 16) Prove that $\frac{e^{x} + e^{-x}}{2} = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots$
- 17) Verify Rolle's theorem for the function defined by $f(x) = x^2 2x$ in [0, 2].
- 18) State Lagrange's mean value theorem.
- 19) Expand $\log_{e}(1 + x)$ upto the term containing x^2 by Maclaurin's expansion.
- 20) Evaluate $\lim_{x\to 0} \left(\frac{1-\cos x}{y^2} \right)$.
- II. Answerany two questions.

 $(2 \times 5 = 10)$

- 1) Prove that a subgroup H of a group G is normal if and only if $gHg^{-1} = H \forall g \in G$.
- 2) If $f: G \to G'$ is a homomorphism from the group G into the group G' then prove that (1) f(e) = e' where e and e' are the identity elements of G and G' respectively. (2) $f(a^{-1}) = [f(a)]^{-1} \ \forall \ a \in G$.
- 3) If $f: G \to G'$ is a homomorphism from the group G into the group G' with Kernel K, then prove that K is a normal subgroup of G.
- 4) If $G = \{a + b\sqrt{2} \mid a, b \in Q\}$ show that $f: (G, +) \rightarrow (G, +)$ defined by $f(a+b\sqrt{2}) = a-b\sqrt{2}$ is an isomorphism.

III. Answer any three questions:

(3x5=15)

1) Solve LPP graphically:

Maximize z = 3x + 5y subject to the constraints $x + 2y \le 20$, $x + y \le 15$, $y \le 6$ $x, y \ge 0$.

- 2) Find all the basic feasible solution of the equation $2x_1 + 6x_2 + 2x_3 + x_4 = 3$, $6x_1 + 4x_2 + 4x_3 + 6x_4 = 2$.
- 3) Solve by simplex method.

Maximize $Z = 6x_1 + 2x_2 + 3x_3$ subject to the constraints $6x_1 + 5x_2 + 3x_3 \le 26$, $4x_1 + 2x_2 + 5x_3 \le 7$, x_1 , x_2 , $x_3 \ge 0$.

4) Obtain an initial solution of the following transportation problem using Vogel's approximation method.

Warehouse Godown	W,	BMS	W _s	Availability
G,	5	1		34
G ₂	6	5	2	15
G ₃	4	3	1	12
G ₄	3	4	6	19
Requirement	25	31	24	T

IV. Answer any two questions:

 $(2 \times 5 = 10)$

- 1) If $\lim_{n\to\infty} a_n = 1$ and $\lim_{n\to\infty} b_n = m$ then prove that $\lim_{n\to\infty} (a_n.b_n) = 1m$.
- 2) Show that the sequence $\{a_n\}$ where $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+n}$ is monotonically increasing and bounded.
- 3) Test the convergence of the sequences whose n^{th} terms are (1) $\frac{\log n}{n}$

(2)
$$\frac{(3n+1)(n+2)}{n(n-1)}$$
.

V. Answerany four questions.

(4×5=20)

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

- 1) Discuss the convergence of the series $\sum \frac{(n^2 + n + 1)}{(n^4 + 1)}$.
- 2) State and prove Cauchy's root test for a series of positive terms.
- 3) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6...(2n)}.x^n$

4) Examine the convergence of
$$\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{n(n-1)}$$
, $0 < x < 1$.

5) Sum to infinity the series.

$$1+\frac{2}{6}+\frac{2.5}{6.12}+\frac{2.5.8}{6.12.18}+\dots$$

BMSCW

$$1 + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \dots$$

VI. Answerany three questions.

(3×5=15)

1) Examine the differentiability of the function

$$f(x) = \begin{cases} 1 - 3x & \text{for } 0 < x \le 1 \\ x^2 - 5x + 2 & \text{for } 1 < x \le 2 \end{cases} \text{ at } x = 1.$$

- 2) Show that a function which is continuous in a closed interval attain its bounds atleast once in the interval.
- 3) State and prove Cauchy's mean value theorem.
- 4) Obtain Maclaurin's expansion of $\log_{e}(\text{secx})$ upto the term containing x^3 .
- 5) Evaluate $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$.